
CHAMP Manual

Suture 	 - PSS 1984
Manual Text 	 - C OrbI: 1984
Software Authors 	- 0. Ritchie. T. Stoddard
Manual Author 	- O.R. Menlo
Typesetter 	 - S.MacdIarrnld
Editor 	 - O.Cohen

Developed for Home Computer Advanced
Course by Personal Software Services, 452
Stoney Staxnon Rd. Coventry (0203) 81346.

Champ is designed to run on the Commodore
64, BBC Micro model B, and Sinclair
Spectrum 48K.

It comprises an assembler for 6502/6510 or
Z80 Assembly language, a program editor, and
a monitor/debugger/disassembler. These
facilities make Champ a powerful aid to the
Assembly language programmer.

LOADING CHAMP
T,BC Model B - CHAIN""

C64 - Hold down [SHIFT] and hit
[RUN/STOP]
Spectrum 48K— LOAD""
Champ will auto-run when loading is complete, so,
having issued the LOAD command, you need do
nothing until the screen clears and displays the
copyright message. Stop the tape, remove it and
replace it with a blank data tape if you intend to save
program files from Champ.

In addition to the copyright message on the screen,
you will see a message about Champ's location in
memory; this is important data, so make a note of it all
now, even it you're not sure what its for. When you've
done that hit [ESC] to run Champ.

The screen should look like this:
Libel 	lootractien Operand
Field 	Field 	Field

Edit Line

Error line

Command Line

As you can see from the prompt on the Command Line,
this is the <ASSEMBLE> mode; other modes are
<EDIT>. <INSERT>, and <DEBUG>. The screen
display in< INSER1> and <EDI1> modes is similar
to that of <ASSEMBLE>, but the <DEBUG>
screen is a different colour, and shows only the
<DEBUG> prompt

You use these modes for the following purposes:

<ASSEMBLE> mode
is used after you have typed in an Assembly

language program, in order to assemble it into
machine code

<INSER1> mode
is what you use to type in an Assembly
language program

<EDIT> mode
enables you to modify an existing Assembly
language program

<DEBUG> mode
allows the inspection or modification of the
contents of the memory, or the execution of a
machine code program

Both <ASSEMBLE> and <DEBlJ> modes are
command modes. In these modes varus keys
represent commands which make something happen
to your program or to memory. On the other hand,
<INSER1> and<EDI1> are toy tmodes; with these
you can move program text aror Ind on the screen., and
add to, or modify, it

You can change from one mode to another as shown
here:

	

<EDIT> 	(RET1 	<INSERT>
'4

(ESC]
'1

<ASSEMBLE>
4

[1] 	(Al

<DEBUG>

If you have just loaded Champ, then there is no
Assembly language program in memory, so
<ASSEMBLE> mode cannot yet be used. Switch
modes tc <EDIT>, and thence to <INSERT>. You
will see the prompt on the Command Lure, and a
blinking Cursor on the Edit Line.

Suppose that you wish to enter the following
program:

DATAI 	ECU *2T
DB *00

0RE2 DB

602
LDA $DATAI
C LC
ADC IDATA1
STA STOREi

ADC sDATA1
STA STORE?

RS

16502 	 .Z80

Type it in exactly as you see it you will discover that
Champ has automatic syntax and format checking.
This means that you cannot exit from a line that
contains a syntax error, or does not conform in layout
'vith the three-field format of the screen. You will find
that [CRS R L] and [CRS RR] move the cursor back and

KEY CONVENTIONS
A letter (or letters) enclosed in
square brackets. thus, [A], means
'the key carrying this symbor.
Special keys referred to in this
Manual are

KEY
	

MEANING
F
	

[Return key];
[Enter] on
Spectrum

[ESC]
	

[escape key];
[4-] on C64:
[Cam StIfrt $
lion
Spcctn rn

[CRSRR] [Cur.' Rght
[Caps Shift +
8] on Spet':

[CRSRL] [Cursor Left];
icaps Shift +
51 on 'pectwm

Li"]
	

1Curscr Up;
[Cap'3hift+
71 O' Spctriii

k-i [Cursor t)w!'I];
[Caps Shift .i
6] on Si i

[GIRL] [Controi Key];
[Caps Shift] on
S'ictrum
per]

TO R_,-,TURN TC CHJUvI.
AIW0'i11ZE US

27 COO

''TTh 	c" 	1' 	T) 	'r 	c'. 	1'

LD
 zso 	IL) 	jJi*4 	Iti 	L't_j'

A, DATA I 	 RAN0MIE US1
AND A
ADC A,pAIAI 	 700, 3
LD 	(STORE I),A

ADC A,DATAX

LD 	tSTORE2),

RET

TO RETURN TO CHAMP

RANDOMIZE USR

27000

TO CLEAR ALL CODE

RANDOMIZE USR

27003

CHAMP Manual

forth on the Edit Line, and that [SPACE] sometimes
produces space characters, and sometimes causes
the cursor to skip from one field to the next [DEL]
erases the cursor character. Some of the effects of this
Field-Formatted mode are strange at first, but you
become used to them quickly. They should help you to
produce error-free, neatly-formatted Assembly
language programs.
When enterini a new program, remember.
LABELS must start with a letter, and must not be more
than six alphanumeric characters long.
INSTRUCTION MNEMONICS must be standard 6502 or
Z80: two, three, or four letters long.
OPERANDS must follow standard 6502 orZ80 formats.
They can contain arithmetic expressions comprising
symbols or hex constants and a '+ or '-' operator,
and can fill, but not exceed, the entire operand field.
COMMENTS must start on a new line with';'. They can
fill, but not exceed, the entire line, and are not subject to
syntax or format checking.
When you have successf! 	typed in the program,
enter < EErIT> mGde. n tiltS mode you can change the
text on the Edit Line, and you can move the enti e text
file up and down on the screen using the following
keys:

KEY 	 EFFECT
['1') 	 Moves the Edit Line up one line

Moves the Edit Line down one
line

[CTRL]+M 	Moves to the top of the text

[CTRLI+[Bj 	Moves to the bottom of the text

[CTRLI+IU] 	Moves text up one screen page

[CTRL)+[D] 	Moves text down one screen
page

[CTRL]+[Z1 	Deletes the contents of the Edit
Line

These keys without [CTRL] have the same effects in
<ASSEMBLE> mode, but you cannot delete or
otherwise modify your text in that mode.

Switch to<ASSEMBLE> mode now, and hit [A) in
order to assemble your program into machine code.
The Command Line will show the Assemble =>
prompt When you enter '11' [RET) you should see this
double-line Assembly listing:

0000 00

0001 00

0002 P.523

LCA $$DATA1

0004 18

CLC

0005 6923

ACC $DATA1

0007 800000

STA STORE1

000A 6923

ADC $DATAI

000C 800100

STA STORE2

000F 60

RTS

6502

DATAI 23 	ST0R'1 0000 	STORE2 0001

This may be a little pzzling at first, but it shows only
the usual parts of an Assembly list: location address

and machine code bytes on one line; label, instruction,
and operand on the next line. At the bottom of the list is
the symbol Table, which lists all the program labels
arid symbols with their hex values.

Because you have not specified a start address in
the program, you will see that the location addresses
start at 0000. You must now return to < EDII>, then
to <INSER1> mode, and put a suitable ORG
instruction at the start of the program You must choose
a location appropriate to your machine, and for this you
need the information about Champ's memory usage
given with the Champ copyright message. If you try to
assemble code into an area which Champ protects,
you will see the 'OVERFLOW message on the Error
Line during assembly. If that happens, you must
change the ORG address.

When you've chosen an ORG address, and
assembled your program witilout any error messages,
assemble again, but this time use the 2 Assemble
option so that the machine code is actually loaded into
memory at its location address. Now hit [M], to switc
to<DEBUG> mode.

The screen should now be all one colour, showing
only the <DEBUG> prompt and cursor. Hit [0] and
type the ORG address of the Assembly language
program, foilowed by [RET], and you should see the
hex disassembly of your prograrri. If you don't see this,
you must check whether you have assembled it
correctly, and whether the ORG address was correct,
and whether it was really a RAM address. If you
choose an ORG address in ROM, evermhing will seem
to work, except that the machine code bytes will not be
stored at their location addresses. You may need help
oom a memory map provided in your machine manual
to check this.

If the disassembly is successful, then you can hit
[G] followed by the ORG address, which will cause
your program to be executed. Don't worry if you make
mistakes with this, the worst that can happen is that
you will cause a software crash, making it necessary
for you to reload Champ and re-type the Assembly
language. You can insure against this iri part by doing a
trial assembly to check your code, the'i SAVE1ng the
Assembly language program on tape before trying tc
assemble it into its location addresses. This is similar
to saving a BASIC program before trying to RUN it
Details of how to save source files are given
overleaf.

If your program executes successfully, then tire
<DEBUG> prompt and cursor will return to the
screen. The 'D' command cn now be used to display
the contents of the memory which the program should
affect If the results are successful, then you might
want to SAVE the machine code (called the Object
Code to distinguish it from the Assembly language
Source Code) to tape, using the 'W command in
<DEBUG>. Having done that, you might like to try
altering some of the object code in memory using the
'@' command, also in <DEBUG>. Once yorlve
started to understand roughly whats going on in
Champ, you should simply play around with any and
every command or option that meets your eye - you
can't damage anything, and ifs really the only way to
learn.

I
<DEBUG> MODE

COMMANDS
This mode combines the following ABBREVIATIONS
functions'
Memory Monitor - allows you to
inspect and alter the contents of
memory.
Hex Dl:iuembfer— allows you to
interpret the contents of memory
as machine code to be converted
back into Assembly language.
Oebuer ---allows you to execute
rr.achine code programs in an
ei ! or-trdpping environment.

<DEBUG> isaconimand mode
but the Command Line/Edit Line!
Field Form' display of the other
niodes is not used: the screen is
blank page showing aidy the
p nmpf and, cursor In this inode
all coris'ur,ts are iix ;OnStants
without the '$' prefix, although
the 'H command supports
decinre! constants.

bystr

chstr

COMMAND EFFECT

addr
uddr

faddr

daddr

he

regname

expr

any hex address
start address of a
block of memory
finish address of a
block of memory
(= 1 + address of last
byte of block)
destination address in
hex
a hex value (hx<=
FE)
CPU register name
(see below)
any arithmetic
expression in one o
two operands;
operands i iay be
decimal Co. stants, 'S
- prefixed hex
constants, or 'egal
symbols; operators
are '+' or'–'
a string of hex byte
values separated by
spaces
a string of characters
(exactly as it appears,
no separators)

Memory from the given address onwards is displayed
one byte at a time, in hex and ASCII equivalent Hit
[RET] to advance to next byte, hit [ESCI to return to
command level, or type a hex constant to replace the
existing content of the byte
Return to <ASSEMBLE> mode
Memory from the given address onwards is displayed in
screen pages; hit any key to continue, or IESC] to
return to command level
Every byte between saddr and faddr is fillecl Nith hx

The block of memory between saddr and faddr is
copied to the block starting at daddr
Memory from addr onwards is disassembled; hit [RET]
to continue, and [ESC] to return to command level
The code starting at addr is executed (returnable)
Execute from addr (non-returnable)
A breakpoint number n, (between1and 8) is set at
addr, to cause a break in execution of any program
which accesses the contents of addr as an instruction;
press [Ci [RET] to continue from breakpoint
Eliminates breekot ft
Displays the addresses of all the breakpoints
Displays the contents of a CPU register and accepts a
new value (similr,r to the function of' @' above)
Executes the code from addr onwards, one instruction
at a time, giving a full register display. Hit [J] to
continue. ESC1 to return to the command level
Displays the decimal, hex, and binary value of expr
Searches the memory from $0000 onwards for every
occurrence of bystr. The word 'searching' is displayed
while the program is searching, and the address is
displayed when bystr is found Hit [RET] to continue
the search, or [ESC[to return to command level
As'S' above
Load. Save, and Verity machine code to tape; see
BASIC panel

Ob addr

A
O addr

F saddr
fiddr he
M daddr
xaddrfaddr
o addr

C addr
C addr
Bnoddr

En
T

J addr

H expr
S byotr

Nchstr
W

4

<EDIT> MODE
COMMANDS

In <EDIT> mode, source text is
displayed with the cursor on the
Edit Line, and <EDIT.> on the
Command Line. Text on the Edit
Lire can be overwritten or deleted
(usiri [DEL) or ISP]). [RET]
caoe'3 the Edit ine contents to
be creaked for syntax and format
An error message will appcar if
the line is fauity, and Inc text will
remain on the Edit Uria tithe lire
is acceptatie, t will be entered
into the source text, and mode
will range from <EDIT> to
<INSERT> [RE]] ?cgglr these
two modes, while [ESC1 toggles
<EDIT> and <ASSEMBLE>
modes

The foBowing keys can be
used to movt the soirr.e text on
the sureen, assuming the text on
ff'e Edit Line is correct. If a 'tne
cci ted, and if the edited tart is
..id, then any of the following
keis has the effect of emering the
raw me into the sowce text
without changing the mode.

If is in this mode that you actually
:n your Assembly language

program irt th Assembler. The
Command Line shows
<lrSEFhT>, and a flashing
Lursr apicars on the Edit Line.
The Edit Line (and the whole
screen) is divideo into three
coloured columns, cot responding
to the jbet, Instruction, and

erand Fields of an AssemL
language prorrcm:

tibet Field
A al,-,el is any alphanumeric
string 01 up to six characters.
There must be a letter in the first
position of the Field. A label does
not require a colon (or any other
character) ?S dlimite'.

,istruction Field
Instructions 	are 	Assembly
anguagi mnemonics as in MOS
Tech 6502 and Zilog Z80
specifications. Tfrey may be two,
three, or foor letters long starting
in the firs' position of the Field

^j pltii Field
Operands may be hex constants
(which must be preceded by $),
labels, symbols, or expressions
'nprising two opeands

separateL o + or - Decimal,
octal, arid binary constants are

KEY 	EFFECT
Moves one line up
the text
Moves one line
down the text.

[CTRL+[U} Moves the screen
text up one page

[CTRL[+[D[Moves the screen
text down one
page.

[CT,'L[+[T] Moves to the top
of source text.

[CTR' t'rlB] Moves to the
xittom of source
text

)CTRL[+[Z1 Deletes the Edit
Line contents.

[ESC] 	Enters
<ASSEMBLE>
node.

[P.S 	Enters
<liSuRT>
mode.

N . B. The text movement keys
have the same effects when used
in <ASSEMBLE> mode, but
they thee oo not qjire(CTRL] to
ha pressed. Thus IU] in
<ASSEMBLE> mode moves
the screen text up one page.

not permitted. Operand formats
for the various addressing modes
are as specified by MOS Tech
and Zilog

Text entry in <INSERT> is
subject to Field Formatting This
.rieans it s mpctssible for you to
type a s'er character label, or a
five-character instruction. Typing
an extra character, or hitting
[SPACE], causes the cursor to
skip to the first position of 'he
next F;elcl,

The CRSRR], [CRSRLI. and
[DEL keys act as normal i
<INSERT> mode— subject to
Fieid Formattino -. jf he
delete •;" acts on the cursor
character rather than or b.c
character to the left of the
cursor.

When you hit [RET] in
<INSERT> mode, the content ,,
of the Edit Line are checked fo ii

 syntax and format; if an eircir is
found, then a message appears
on the Error Line. If no error is
found, then the contents of the
Edit Line enter the source text.
and the Edit Line is cleared for the
entry of a new line. Ntting [RET]
when the Edit Line is blank
toggles between <EDITh mode
and <INSERT> mode

CPU RegiJi
AbbreV

6502
A = Accumulator; X, Y = V
registers, P= Status register; SP
= Stack Pointer

<ASSEMB1.L

COMMAND
FORMA1
Fled =>st ring [RET)
Searches the Assembly language
program tom the start of the
program for the first o'" 'er'e
of the given string.
Next =>string [RET)
Searches the Assembly language
program for the next occuirence
of the given string The search
begins from the end ' the
program line currently on th; Edit
Line.
Fled 	>[RET] and
Next => [RET]
As above, but this searches lot
the string defined in last 'F or'N'
command. While a search is
preceeding, the wesa gr

 'searching' appears on inc Error
Line. If the search is successful
the line containing the stri ng

 being searched for appears on
the Edit Line. If the search Is
unsuccessful, the last line of he

ogram appears on the Edit Ui
1ad => Seen = > Verity =>
These rust all be followed by a
filename; double quotes are not
needed, but the filename must b e

 legal for the user's mr ,

Print =>expresnion FE
This prints the hex value of the

 given expression on the Era'
Line. eg.
Print =>F8-C 	$37
Symbols already defined ti
source text can be used
expressions; but only one.
Operator (+ or–) is alloweue
expression
QuIt =>M
This quits Chasn and returns
control to the BASIC system,
if [Y] follows the prompt;
any other response aborts he
command.
[M[
Enter <DEBUG> mode. Retc
from there to <ASSEMBLE>
mode by pressing [A] [RET),
[ES C)
Toggle 	<EDIT> 	ad
<ASSEMBLE> modes
Assemble =>)ophon nembe [RB)
This assembles the source Iexfi
one of a variety of wa
depending upon which numerl
option is chosen:

<IfERT> ?ODE
COM MANDS

L

CHAMP ERROR
MESSAGES

Error messages appear xi the
Error Lire in all modes except
<DEBUG>, which prints
'ERROR' at the current cursor
position

MESSAGE
LABEL ERROR

INSTRUCTION
ERROR

OPERAND
ERROR

UNDEFINED
LABEL

JUMP OUT OF
RANGE

OVERFLOW

ER RON

MEANING
A synta or
format error in
the Label Field.
A syntax or
format error in
the Instwctn
Field
Asyritaxor
forniit error i1

the Ope'and
Field.
ire Label or
Symbol
displayco Oil

the Edit Line
nas not :en
as'j'ied sri
a"dress or
va'je,
T;iereiatie
jump i2 the
insr uction on
the Edit Licw
neq Ares a
di.'!cerneot of I
rnoretjn127 I
bytes for.ord
or 128 ciyos

Assembling the
instnjctic-, on
the Edit Lt,:
into memcry
e. .uIci overwrite
CHAMP iteIf,
or some
protected
memory, or
would be out of
range.
The operand of
a<DEBUG>
command
i:or':t:ns "ieal
',yrnL'olO, V IS

!oo large a
ituanfity, or is a
bad ddress,
etc.

KEY PROMPT 	FUNCTION
[F] Find => Find a string
[N] Next => Find a string
[L] 'oad=> Load asource

file
[W 've => Save a

source file
[1 Verity => Verify a

source file
[P[Print => Print value of

expression
[U] Quit => 	Quit to BASIC

IN 	Enter
<DEBUG>
mode

[ESCI 	Enter
<EDI1>
nde

[A] Assemble Assemble
. -> 	prcgram

To abort any of these commands,
do not enter a command operand,
just hit [RET] in response to the
prompt

Spectrum variations
KEY 	PROMPT
[J[Load =>

Save =>:
[sy 1] + Verify =>
[R[

orgin: assemble
machine code in
men'iory from addr
onwards. The program
line with ORG on it
cannot take a label.
equate: set the symbol
in the Label Field equal
to the constant,
symbol, or expression
in the Operand Field.
define byte(s): load
this location, and as
many following as
required, with the
value(s) of const or
chrstr
define word: load this
location with the lo-
byte, and the next
location with the him
byte oi the operand
define storage: add the
value of the operand to
the location address of
this instruction

addr
	

a S- prefixed hex address
cost
	

a $-prefixed hex
constant; as an operand
of DB, const rust be a
single-byte value. A
string of constants, such
as (DB const [SP[consl
[SP[const . etc) is
valid

choir
	

a string of characters
enclosed in single qtes
(e.g. 'A83%9K1 0')

symb
	

any valid symbolic
operand

ASSEMBLY LANGUAGE
FORMATS

PS EU DO-

CODES MEANING 	 Abbrt'iiations:
ORfl

EQU

08
cons V
choIr

Ow
co us If
Symb

OS
;oosf/
symb

ASSEMBLY
OPTIONS

OPTION NUMBER
01234561

Display full
list on screen NY NY NY NY
Lead rn/code
into memory N N I I N N I I
Copy screen
to printer 	NNNNYYYY
Verity labels,
symbols &
syntax 	YYYYYYYY
Display
symbol fable
onscreen 	YYYYYYYY

V = This facility enabled
N = This facility disabled

E. g, Assemble =>2 [RET]
causes the source text to be
assembled with error-checking,
and the resc'ting machire code to
be loaded into menry as directed
by the 0 R pseudo-op-code. The
symbol table is displayed on the
screen, but no assembly listing
appears on the screen, and there
is no output to the printer.
Any option 'iumber can be
preceded by 1, which gives a
double-line display if the screen
list facility is enabled

If an error is found during
assembly, a message will appear
on the Error Line, assembly will
cease, and the screen will display
the source text with the faulty
instruction appearing on the Edit
Line.

i1ister Name
eViations

INSTRUCTION
FORMATS

Z80
INSTRUCTION 	 ADDRESSING MODE
ID 	A,B 	Register (Direct)
10 	A.$9F 	lmiriediate
ID 	(SED46j.A 	Absolute (Direct)
LO 	A 	Register (Indirect)
LU 	A.(IY+d) 	Indexed (Indirect)
CCF 	 Implied

LINKING MACHINE
CODE ANO BASIC

Once you're familiar with both
Champ and AsumMy langu ge
programming, you'll prob:ty
want to be able to call speai-
r.ejrpose machine-code routines
from BASIC programs, rather than
write entire programs in machine
code The easiest .vay of doing
this is .
it Using Chnp, develop the
Assembly language routine until
it works.
2) From<ASSEMBLE> mde,
SAVE the Assembly language
routine to 'ape for futu:e
reference.
3) Assemb'e the routine into
memory, cnoosin; an OR3
address nearthe top of User RAM
(see your computer User Maoual
for Memory Map and advice).
4) From <DEBUG> mode,
SAVE the block of memory
containirg your rr,achine code to
tape
5) Quit Champ.
6) Write your BASIC program,
starting with the instructiorm
necessary to set the op of User
RAM pointers to an address
safely below the ORG address of
your rxidne. Follow those
instructions in the program wi:n a
LOAD instruction that wit load
your machine code routine from
tape to the tccatio;i r..i which it
was SAVEd consult ycur User
Manual).
7) Whenever you need to execute
the niachirie-code routine in the
a:c program, use a CALL SYS,
eq USR instruction with your
routine's ORG address.

I 8i Save the BASIC program as
usual.

If you exit from Champ to BASIC,
and type LIST, you should see an
example of this technique at
work: When you LOAD Champ,
you load only the short BASIC
loader program which you see:
when this is executed, it LOADS
Champ itself as a machine code
file into memory, then calls it as a
machine code routine.

za 0
A = AcCumulator; F = Flag!
Status register, H,LB,C,D,E =
N... E registers; SP = Stack
Pointer, IX. IY = IX. IV registers.

E> MODE

COMMANDS

INSTRUCTION
LOA 	#304
LOA 	$3C
LOA 	3A290
LOA 	S31FEX
LOA 	57B.X
LOA 	132A.X[
LOA 	($2A),Y
CLC

6502
ADDRESSING MODE
Immediate
Zero Page (Direct)
Absolute (Direct)
Absolute Indexed
Zero Page Indexed
Pre-Indexed (Indirect)
Post-Indexed (Indirect)
Implied

